KERALA UNIVERSITY

Model Question Paper- M. Sc. Examination
Branch: Mathematics
MM 224-Partial Differential Equations and Integral Equations

Time: 3 hours
Max. Marks:75

Part A

Answer any 5 questions from among the questions 1 to 8 Each question carries 3 marks

1. Solve the equation $u_{x}=1$ subject to the initial condition $u(0, y)=g(y)$.
2. Find the general solution to the equation $y u_{x}+x u_{y}=0$ using the Lagrange method.
3. Let $u(x, t)$ be a solution of the wave equation $u_{t t}-c^{2} u_{x x}=0$, which is defined in the whole plane. Assume that u is constant on the line $x=2+c t$. Prove that $u_{t}+c u_{x}=0$.
4. Consider the equation $u_{x x}-2 \sin x u_{x y}-\cos ^{2} x u_{y y}-\cos x u_{y}=0$. Find a coordinate system $s=s(x, y), t=t(x, y)$ that transforms the equation into its canonical form.
5. Prove the necessary condition for the existence of a solution to the Neumann problem.
6. Determine the resolvent kernel associated with $K(x, \xi)=x \xi$ in the interval $(0,1)$.
7. Using Euler's equation, find the shortest curve joining two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$.
8. Find the point on the plane $a x+b y+c z=d$ that is nearest the origin by the method of Lagrange multipliers. .
$5 \times 3=15$

Part B

Anwer all questions from 9 to 13
Each question carries 12 marks
9. A. a. Find a function $u(x, y)$ that solves the Cauchy problem

$$
x^{2} u_{x}+y^{2} u_{y}=u^{2}, u(x, 2 x)=x^{2}, x \in \mathbb{R}
$$

b. Check whether the transversality condition holds.

OR

B. a. Solve the equation $(y+u) u_{x}+y u_{y}=x y$ subject to the initial conditions $u(x, 1)=1+x$.
b. Show that the Cauchy problem $u_{x}+u_{y}=1, u(x, x)=1$ is not solvable.
10. A. a. Prove that the equation $x^{2} u_{x x}-2 x y u_{x y}+y^{2} u_{y y}+x u_{x}+y u_{y}=0$ is parabolic and find its canonical form and the general solution on the half-plane $x>0$.
b. Solve the problem

$$
\begin{aligned}
u_{t t}-u_{x x} & =t^{7}, & & -\infty<x<\infty, t>0 \\
u(x, 0) & =2 x+\sin x & & -\infty<x<\infty \\
u_{t}(x, 0) & =0, & & -\infty<x<\infty
\end{aligned}
$$

OR

B. Obtain the D'Alembert's solution of the following one dimensional wave equation

$$
\begin{aligned}
u_{t t}-c^{2} u_{x x}=0, & -\infty<x<\infty, t>0 \\
u(x, 0)=f(x), u_{t}(x, 0)=g(x), & -\infty<x<\infty
\end{aligned}
$$

11. A. a. Solve the equation $u_{t}=17 u_{x x}, 0<x<\pi, t>0$, with the boundary conditions $u(0, t)=u(\pi, t)=0, t \geq 0$ and the initial conditions

$$
u(x, 0)= \begin{cases}0, & 0 \leq x \leq \frac{\pi}{2} \\ 2, & \frac{\pi}{2} \leq x \leq \pi\end{cases}
$$

b. State and Prove the Maximum principle.

OR

B. State and Prove The mean value principle. Is the converse true? Justify.
12. A. Find the characteristic values and characteristic functions for the equation $y(x)=\lambda \int_{0}^{2 \pi} \sin (x+\xi) y(\xi) d \xi$.

OR

B. a. Form the Volterra equation corresponding to the initial value problem $y^{\prime \prime}+x y=1$ with $y(0)=y^{\prime}(0)=0$.
b. Show that the characteristic values of a Fredholm equation with a real symmetric kernel are all real.
13. A. Find the extremals for the integral $I=\int_{x_{1}}^{x_{2}} f\left(x, y, y^{\prime}\right) d x$, if the integrand is
a. $y^{2}-\left(y^{\prime}\right)^{2}$
b. $\frac{\sqrt{1+\left(y^{\prime}\right)^{2}}}{y}$

OR

B. A uniform flexible chain of given length hangs between two points. Find its shape if it hangs in such a way as to minimize its potential energy.

$$
5 \times 12=60
$$

