Time: 3 hours

10.

Max. Marks:75

Part A Answer any 5 questions from among the questions 1 to 8 Each question carries 3 marks

- 1. Prove that the projection maps $P_i: X \longrightarrow X_i$ where $X = X_1 X X_2 X \dots X_n$ are continuous.
- 2. Prove that space X is a T_1 space if and only if each finite subset of X is closed
- 3. Prove or disprove " The set of dyadic numbers is dense in \mathbb{R}
- 4. Prove or disprove "The product of two normal spaces is normal".
- 5. In a product space XxX the set (x, x) is called the diagonal. Prove that X is Hausdorff if the diagonal set is closed
- 6. If \mathfrak{F} is an unltrafilter on X and $f: X \longrightarrow Y$ is onto Y then show that $f(\mathfrak{F})$ is an ultrafilter on Y
- 7. Prove that a convex set A in \mathbb{R}^n is contractible to each point x_0 in A
- 8. Is the unit circle S^1 a retract of the closed unit ball B^2 ? Justify your claim.

Part B Answer all questions from 9 to 13 Each question carries 12 marks

9.	А.	a)	. Prove that product of a finite number of compact spaces is compact	6
		b)	Prove that the product of an arbitrary collection of connected spaces is	
			connected.	6

OR

B. a) Prove that countable	t a product of a finite number of second coun	ntable spaces is second 5
b) Show that point space	the cantor set C is homeomorphic to a countable es	e infinite product of two 7
A State and prov	ve Tietze Extension theorem	12
	OR	

- B a) Show that every metric space is normal 5
 - b) If X is a separable normal space and E a subset of X with card $E \ge c$, show that E has a limit point in X. 7

11.	А	State	and	prove	Tychonoff	theorem.

OR

B a) Prove that every filter is contained in an ultra filter.b) Prove that a topological space is Hausdorff iff limits of all nets in it are un	6 lique. 6			
12. A. State an prove Covering path property.	12			
OR				
B. a) Prove that the fundamental group of S^1 is isomorphic to the additive grount integers.	6			
b) Show that every contractible space is simply connected.	6			
13. A. For $n \ge 2$, show that S^n is simply connected.	12			
OR				
B. a) If D is a deformation retract of space X and x_0 is a point of D, show that \prod_1	$_{1}(X, x_{0})$			

В.	a)	If D is a deformation retract of space X and x_0 is a point of D, show that $\prod_1 (X, x_0)$	0)
		and $\prod_1(D, x_0)$ are isomorphic.	8
	b)	Find the fundamental group of a cylinder C .	4

b) Find the fundamental group of a cylinder C.