KERALA UNIVERSITY

Model Question Paper- M. Sc. Examination
Branch: Mathematics
MM 223- Toplogy-II

Time: 3 hours
Max. Marks:75

Part A

Answer any 5 questions from among the questions 1 to 8 Each question carries 3 marks

1. Prove that the projection maps $P_{i}: X \longrightarrow X_{i}$ where $X=X_{1} X X_{2} X \ldots X_{n}$ are continous.
2. Prove that space X is a T_{1} space if and only if each finite subset of X is closed
3. Prove or disprove " The set of dyadic numbers is dense in \mathbb{R}
4. Prove or disprove " The product of two normal spaces is normal".
5. In a product space $X x X$ the set (x, x) is called the diagonal. Prove that X is Hausdorff if the diagonal set is closed
6. If \mathfrak{F} is an unltrafilter on X and $f: X \longrightarrow Y$ is onto Y then show that $f(\mathfrak{F})$ is an ultrafilter on Y
7. Prove that a convex set A in R^{n} is contractible to each point x_{0} in A
8. .Is the unit circle S^{1} a retract of the closed unit ball B^{2} ? Justify your claim.

Part B
 Answer all questions from 9 to 13
 Each question carries 12 marks

9. A. a). Prove that product of a finite number of compact spaces is compact
b) Prove that the product of an arbitrary collection of connected spaces is connected.

OR

B. a) Prove that a product of a finite number of second countable spaces is second countable
b) Show that the cantor set C is homeomorphic to a countable infinite product of two point spaces
10. A State and prove Tietze Extension theorem

OR

B a) Show that every metric space is normal
b) If X is a separable normal space and E a subset of X with $\operatorname{card} E \geq c$, show that E has a limit point in X.
11. A State and prove Tychonoff theorem.

OR

B a) Prove that every filter is contained in an ultra filter. 6
b) Prove that a topological space is Hausdorff iff limits of all nets in it are unique. 6
12. A. State an prove Covering path property. 12

OR

B. a) Prove that the fundamental group of S^{1} is isomorphic to the additive group \mathbb{Z} of integers.
b) Show that every contractible space is simply connected. 6
13. A. For $n \geq 2$, show that S^{n} is simply connected. 12 OR
B. a) If D is a deformation retract of space X and x_{0} is a point of D, show that $\prod_{1}\left(X, x_{0}\right)$ and $\prod_{1}\left(D, x_{0}\right)$ are isomorphic.
b) Find the fundamental group of a cylinder C.

